active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
FROM(mark(X)) → FROM(X)
LENGTH(ok(X)) → LENGTH(X)
TOP(mark(X)) → PROPER(X)
PROPER(length1(X)) → PROPER(X)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(length(cons(X, Y))) → LENGTH1(Y)
TOP(ok(X)) → ACTIVE(X)
PROPER(length1(X)) → LENGTH1(proper(X))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(length(X)) → LENGTH(proper(X))
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
PROPER(from(X)) → PROPER(X)
ACTIVE(from(X)) → ACTIVE(X)
TOP(ok(X)) → TOP(active(X))
LENGTH1(ok(X)) → LENGTH1(X)
ACTIVE(length(cons(X, Y))) → S(length1(Y))
S(mark(X)) → S(X)
PROPER(from(X)) → FROM(proper(X))
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
PROPER(length(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
ACTIVE(from(X)) → S(X)
ACTIVE(s(X)) → ACTIVE(X)
TOP(mark(X)) → TOP(proper(X))
ACTIVE(length1(X)) → LENGTH(X)
ACTIVE(from(X)) → FROM(active(X))
ACTIVE(from(X)) → CONS(X, from(s(X)))
FROM(ok(X)) → FROM(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(from(X)) → FROM(s(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
FROM(mark(X)) → FROM(X)
LENGTH(ok(X)) → LENGTH(X)
TOP(mark(X)) → PROPER(X)
PROPER(length1(X)) → PROPER(X)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(length(cons(X, Y))) → LENGTH1(Y)
TOP(ok(X)) → ACTIVE(X)
PROPER(length1(X)) → LENGTH1(proper(X))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(length(X)) → LENGTH(proper(X))
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
PROPER(from(X)) → PROPER(X)
ACTIVE(from(X)) → ACTIVE(X)
TOP(ok(X)) → TOP(active(X))
LENGTH1(ok(X)) → LENGTH1(X)
ACTIVE(length(cons(X, Y))) → S(length1(Y))
S(mark(X)) → S(X)
PROPER(from(X)) → FROM(proper(X))
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
PROPER(length(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
ACTIVE(from(X)) → S(X)
ACTIVE(s(X)) → ACTIVE(X)
TOP(mark(X)) → TOP(proper(X))
ACTIVE(length1(X)) → LENGTH(X)
ACTIVE(from(X)) → FROM(active(X))
ACTIVE(from(X)) → CONS(X, from(s(X)))
FROM(ok(X)) → FROM(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(from(X)) → FROM(s(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
LENGTH1(ok(X)) → LENGTH1(X)
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
LENGTH1(ok(X)) → LENGTH1(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
LENGTH(ok(X)) → LENGTH(X)
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
LENGTH(ok(X)) → LENGTH(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
S(ok(X)) → S(X)
S(mark(X)) → S(X)
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
S(ok(X)) → S(X)
S(mark(X)) → S(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
FROM(mark(X)) → FROM(X)
FROM(ok(X)) → FROM(X)
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
FROM(mark(X)) → FROM(X)
FROM(ok(X)) → FROM(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(length(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(from(X)) → PROPER(X)
PROPER(length1(X)) → PROPER(X)
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(length(X)) → PROPER(X)
PROPER(from(X)) → PROPER(X)
PROPER(length1(X)) → PROPER(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
length(ok(X)) → ok(length(X))
length1(ok(X)) → ok(length1(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
POL(0) = 0
POL(TOP(x1)) = 2·x1
POL(active(x1)) = 2·x1
POL(cons(x1, x2)) = x1 + x2
POL(from(x1)) = 2·x1
POL(length(x1)) = 2·x1
POL(length1(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = 2·x1
POL(proper(x1)) = x1
POL(s(x1)) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
length1(ok(X)) → ok(length1(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(0)) → TOP(ok(0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(mark(nil)) → TOP(ok(nil))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(0)) → TOP(ok(0))
TOP(ok(X)) → TOP(active(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
length1(ok(X)) → ok(length1(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(0)) → TOP(ok(0))
TOP(ok(X)) → TOP(active(X))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
length1(ok(X)) → ok(length1(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(s(length1(x1))))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(length(nil))) → TOP(mark(0))
TOP(ok(length1(x0))) → TOP(mark(length(x0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(mark(0)) → TOP(ok(0))
TOP(ok(length(nil))) → TOP(mark(0))
TOP(ok(length1(x0))) → TOP(mark(length(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(s(length1(x1))))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
length1(ok(X)) → ok(length1(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(s(length1(x1))))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(length1(x0))) → TOP(mark(length(x0)))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
length1(ok(X)) → ok(length1(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(length1(x0))) → TOP(mark(length(x0)))
Used ordering: Polynomial interpretation [25]:
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(s(length1(x1))))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(cons(x1, x2)) = 0
POL(from(x1)) = 0
POL(length(x1)) = 0
POL(length1(x1)) = 1
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(s(x1)) = 0
from(mark(X)) → mark(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
length1(ok(X)) → ok(length1(X))
s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(ok(X)) → ok(s(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(s(length1(x1))))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
length1(ok(X)) → ok(length1(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
Used ordering: Polynomial interpretation with max and min functions [25]:
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(s(length1(x1))))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
POL(0) = 1
POL(TOP(x1)) = x1
POL(active(x1)) = 1
POL(cons(x1, x2)) = 0
POL(from(x1)) = 1
POL(length(x1)) = 0
POL(length1(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = 0
from(mark(X)) → mark(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
length1(ok(X)) → ok(length1(X))
s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(ok(X)) → ok(s(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(length(cons(x0, x1)))) → TOP(mark(s(length1(x1))))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
length1(ok(X)) → ok(length1(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(length(cons(x0, x1)))) → TOP(mark(s(length1(x1))))
Used ordering: Polynomial interpretation with max and min functions [25]:
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(cons(x1, x2)) = 0
POL(from(x1)) = 0
POL(length(x1)) = 1
POL(length1(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(s(x1)) = 0
from(mark(X)) → mark(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
length1(ok(X)) → ok(length1(X))
s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(ok(X)) → ok(s(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
length1(ok(X)) → ok(length1(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
Used ordering: Polynomial interpretation with max and min functions [25]:
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(cons(x1, x2)) = 1
POL(from(x1)) = 1
POL(length(x1)) = 1
POL(length1(x1)) = 0
POL(mark(x1)) = 1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(s(x1)) = 1
from(mark(X)) → mark(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
length1(ok(X)) → ok(length1(X))
s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(ok(X)) → ok(s(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
length1(ok(X)) → ok(length1(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(mark(length(x0))) → TOP(length(proper(x0)))
Used ordering: Polynomial interpretation [25]:
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(cons(x1, x2)) = 1
POL(from(x1)) = 1
POL(length(x1)) = 0
POL(length1(x1)) = 0
POL(mark(x1)) = 1
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(s(x1)) = 1
from(mark(X)) → mark(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(ok(X)) → ok(s(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
length1(ok(X)) → ok(length1(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TOP(ok(length(cons(x0, x1)))) → TOP(mark(s(length1(x1))))
Used ordering: Polynomial interpretation [25]:
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
POL(0) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = 0
POL(cons(x1, x2)) = 1
POL(from(x1)) = 1
POL(length(x1)) = 1 + x1
POL(length1(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 1
POL(ok(x1)) = x1
POL(proper(x1)) = x1
POL(s(x1)) = 0
from(mark(X)) → mark(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
proper(0) → ok(0)
proper(nil) → ok(nil)
length1(ok(X)) → ok(length1(X))
proper(length1(X)) → length1(proper(X))
s(mark(X)) → mark(s(X))
length(ok(X)) → ok(length(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(ok(X)) → ok(s(X))
proper(length(X)) → length(proper(X))
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDPOrderProof
↳ QDP
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(mark(length(x0))) → TOP(length(proper(x0)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(length1(x0))) → TOP(length1(proper(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(length(X)) → length(proper(X))
proper(nil) → ok(nil)
proper(0) → ok(0)
proper(length1(X)) → length1(proper(X))
length1(ok(X)) → ok(length1(X))
length(ok(X)) → ok(length(X))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(mark(X)) → mark(from(X))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(length(nil)) → mark(0)
active(length(cons(X, Y))) → mark(s(length1(Y)))
active(length1(X)) → mark(length(X))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))